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PERSPECTIVE

Making cough count in tuberculosis care
Alexandra J. Zimmer 1,2, César Ugarte-Gil3,4, Rahul Pathri5, Puneet Dewan6,

Devan Jaganath7,8, Adithya Cattamanchi 7,8, Madhukar Pai1,2 &

Simon Grandjean Lapierre 2,9,10✉

Abstract

Cough assessment is central to the clinical management of respiratory diseases, including

tuberculosis (TB), but strategies to objectively and unobtrusively measure cough are lacking.

Acoustic epidemiology is an emerging field that uses technology to detect cough sounds and

analyze cough patterns to improve health outcomes among people with respiratory condi-

tions linked to cough. This field is increasingly exploring the potential of artificial intelligence

(AI) for more advanced applications, such as analyzing cough sounds as a biomarker for

disease screening. While much of the data are preliminary, objective cough assessment could

potentially transform disease control programs, including TB, and support individual patient

management. Here, we present an overview of recent advances in this field and describe how

cough assessment, if validated, could support public health programs at various stages of the

TB care cascade.

Prior to the COVID-19 pandemic, tuberculosis (TB) was the leading infectious cause of
mortality, resulting in approximately 10.0 million new infections and 1.4 million deaths
worldwide in 20191. The COVID-19 pandemic and lockdowns have had a devastating

impact on TB programs globally, as resources and tools used to diagnose and manage TB were
diverted to COVID-192. To restore progress and mitigate the impact of COVID-19 on TB
management, it is essential to leverage new technologies and innovations to improve TB pre-
vention and care.

TB is an infectious disease caused by the inhalation of droplets containing the bacteria
Mycobacterium tuberculosis3. TB varies in presentation, ranging from asymptomatic, non-
transmissible TB infection (also known as latent TB infection) to symptomatic, contagious active
TB disease4. Between these two extremes are subclinical forms of TB, where people are con-
sidered asymptomatic but may transmit TB to others4.

While active TB disease most commonly affects the lungs (pulmonary TB), approximately
15–20% of active TB occurs in other parts of the body, including lymph node TB, abdominal TB,
TB meningitis, ocular TB, and neurological TB, to name a few5. The occurrence of TB in the
body other than the lung is known as extrapulmonary TB (EPTB)3. Active pulmonary TB is
most commonly diagnosed by microbiological testing on mucus from the lung (sputum) sam-
ples. Sputum culture is the gold standard for TB testing. However, it is expensive, slow, and
requires access to centralized biosafety laboratories6. Sputum smear microscopy is often used in
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primary care facilities in lower-resource settings as a cheaper
alternative, but has low sensitivity and is not able to detect drug-
resistance7. In recent years, more advanced molecular platforms
(e.g., GeneXpert PCR machines) have been scaled up as smear-
replacement tools that offer greater sensitivity and quicker
turnaround times for TB diagnosis8,9. Culture, smear microscopy,
and GeneXpert are commonly used as reference standards when
evaluating the performance and accuracy of newer diagnostics.
While active TB is curable, the long regimens (6 months for drug-
susceptible TB) and adverse events caused by the antibiotics used,
complicate treatment and increase the risk of drug-resistance
emerging10,11.

As coughing is a common TB symptom, it can be used to
diagnose TB and assess effectiveness of treatment. This Per-
spective discusses advances in acoustic epidemiology and AI-
based methods to assess cough and how these can be used during
TB diagnosis and treatment.

Using cough as an objective biomarker for TB control and
care
Cough is a complex physiological phenomenon as it is both a
symptom of, and a defense mechanism against, respiratory dis-
eases. Cough is a hallmark symptom of pulmonary TB and is
clinically assessed throughout the cascade of TB care, for exam-
ple, as a triage tool to trigger TB testing or to monitor response to
therapy. Cough patterns vary depending on the amount of M.
tuberculosis in the lungs, and cough tends to regress with suc-
cessful TB therapy12–15.

While many TB screening programs use cough duration and
symptoms to determine when TB testing is required, this symp-
tom screening approach lacks sensitivity. In low-resource settings,
peripheral health centers, and communities, triage tools such as
chest X-rays are not available, thus symptom-based screening
remains the only available strategy to identify people with TB.
The World Health Organization (WHO) recommends testing
people reporting symptoms compatible with TB, including pro-
longed cough (usually interpreted as a cough that lasts two weeks
or longer)16. According to the 2021 WHO TB screening guide-
lines, the sensitivity of prolonged cough alone is 42% among
HIV-negative individuals, well below the WHO community-
based triage test target product profile (TPP) of ≥90%
sensitivity16,17.

It is difficult for people to describe their cough symptoms, and
it is as challenging for clinicians to identify the cause. Individuals
tend to have poor recall of the duration of their symptoms, and
symptom severity is subjective18,19. Given our current inability to
objectively detect and monitor cough sounds, patients and pro-
viders systematically reduce this data-rich symptom into sub-
jective and dichotomous information (e.g., cough versus no
cough, chronic versus acute, getting better versus getting worse),
precluding rigorous understanding of cough data, and preventing
the use of cough to its full clinical potential. By making cough an
objective and measurable component of TB care, either by
helping individuals recognize abnormal cough patterns, or by
harnessing artificial intelligence (AI) technology (using computer
systems to recognize and interpret the implications of a cough
sound)20 to differentiate types of coughs, we can potentially
improve patient management and clinical outcomes at different
stages during the cascade of TB care.

Advances in acoustics for objective cough monitoring
Questionnaire-based tools and scales have been used to collect
and evaluate the severity of coughs of varying etiology in an
attempt to transform subjective cough reporting into objective
data. Such tools include the visual analog scale (VAS), cough

symptom score (CSS), and cough diaries21. Both the VAS and
CSS attempt to quantify the severity of cough based on a patient’s
perception of their cough. Cough diaries can take various forms,
but all depend on patients tracking the frequency and severity of
their coughs over time. Other questionnaires expand their
assessment of cough to incorporate questions on health-related
quality of life21. For example, the Leicester Cough Questionnaire
(LCQ) is a validated self-completed questionnaire that measures
the quality of life of individuals with a chronic cough, and has
previously been used to evaluate cohorts of people with TB
undergoing anti-TB therapy22–24. While such tools are easy to use
and implement in clinical settings, they remain subject to bias
related to self-perception of health and attention to symptoms,
ultimately limiting their clinical application.

Objectivity in cough analysis is improved when using recording
devices and computer-assisted acoustic interpretation algorithms.
As early as the 1960s, Loudon and Spohn used tape recorders to
record and count the coughs of people with TB at night25. Other
forms of early ambulatory cough meters involved the integration
of audio recording devices and electromyogram (EMG)
electrodes26, which simultaneously recorded cough sounds and
chest muscle contractions when the person coughed. In 2006,
Paul et al. developed and evaluated a self-contained cough
monitor composed of an accelerometer (for measuring cough-
related vibrations) that stored data on a CompactFlash memory
card27. This device was attached to the patient’s neck in the
suprasternal notch (jugular notch) and demonstrated good
agreement with coughing seen on video footage. Over the years,
more advanced 24 h recording devices have been developed.
These devices typically have a microphone (e.g. free-field
microphone necklace or one that attaches to the patient’s lapel),
which sends the cough sounds to a digital sound recorder, usually
attached at the hip of the patient28. Such recording devices
include the Leicester Cough Monitor (LCM), the Cayetano Cough
Monitor (CayeCoM), and the VitaloJak29–31.

Cough counts and patterns were the first objective markers
used to analyze cough severity and variation over time. The LCM,
CayeCoM and VitaloJak have all been validated for the mea-
surement of cough frequency29–31. The LCM and VitaloJak are
currently the most widely used cough monitoring tools, with
reported cough detection sensitivities of 91% and >99%,
respectively28. The LCM uses a largely automated algorithm for
detecting cough sounds, requiring operator input for calibrating
the device (approximately 5 min for every 24 h of recording)28.
The LCM and the CayeCoM have been used to investigate cough
among people with pulmonary TB. Turner et al. used the LCM as
part of a cross-sectional survey of cough frequency among people
with TB and their contacts32. Williams et al. used the LCM to
correlate exhaled M. tuberculosis with cough frequency15. The
CayeCoM has been used in various studies to measure cough
frequency among cohorts of people with pulmonary TB under-
going treatment12–14,33,34. A summary of studies that use various
tools for objective cough monitoring in the context of TB care can
be found in Supplementary Table 1.

While ambulatory recording devices have enabled continuous
cough recording, many of the devices used to date are bulky and
obtrusive. Cough is an obvious and stigmatizing symptom,
especially among people with TB, and the COVID-19 pandemic
has dramatically heightened this stigmatization35. In order to
efficiently monitor people with cough, recording strategies must
be inconspicuous to avoid adding to the stigmatization of
respiratory conditions. Smartphones with cough detection and
recording applications provide a more discreet approach to
monitoring TB coughs. Several cough recording applications have
already been developed, including Hyfe Research, AI4COVID-19,
and ResAppDx36–38.
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Developments in artificial intelligence allow for rigorous
assessment of cough
Advances in machine learning, a subset of AI that enables
machines to apply algorithms on available data to automatically
“learn” and make autonomous decisions20, has given rise to a
variety of algorithms for cough monitoring that can be deployed
on digital recording devices, including smartphones (see Sup-
plementary Table 1 for examples of the types of algorithms used
for cough detection and cough classification). This new technol-
ogy allows the analysis of both the frequency and the nature of
cough sounds. For example, some algorithms first transform
sound recordings into spectrograms—a visual representation of
the frequency, amplitude, and time characteristics of sounds—
before running an algorithm on the spectrogram to visually
analyze the cough’s features (Fig. 1).

These algorithms are being trained to identify human coughs
from ambient sounds (cough detection), as well as to differentiate
coughs from patients with distinct clinical conditions or at dif-
ferent stages of disease (cough classification), though the latter use
case is yet to be validated39–43. Several preliminary cough classi-
fication algorithms have been developed for COVID-19 and TB. A
classification algorithm was reported to detect COVID-19 infec-
tions among people with a cough with 98% sensitivity and 94%
specificity, based on a sample of 5320 individuals (half of whom
were COVID-19 positive) and against a reference standard of an
“official test” (laboratory method accepted as a diagnosis for
COVID-19), doctor assessment, or personal assessment42.
Another group reported that COVID-19 could be diagnosed using
cough with 89% sensitivity and 97% specificity37. For TB, TimBre
is a screening application that leverages machine learning to detect
TB coughs with a sensitivity of 80% and specificity of 92% against
a composite reference standard of sputum smear microscopy,
GeneXpert, and chest X-ray, from a sample of 5 bacteriologically-
positive and 469 bacteriologically-negative individuals44. Another
study developed a cough-based screening system that could dis-
criminate cough sounds produced by 16 individuals with TB from
those produced by 35 individuals with other lung diseases with
93% sensitivity and 95% specificity against a bacteriological
(laboratory method not specified) reference standard, achieving
the WHO’s TPP requirements of 90% sensitivity and 70% speci-
ficity for a community-based TB triage test3,45. Botha et al. also
developed an AI algorithm for TB cough classification from a
sample of 17 people with TB and 21 healthy individuals, achieving
an accuracy of 78% and a sensitivity of 95%, at a specificity of 72%

against a sputum culture reference standard46. These early studies
demonstrate that digital cough monitoring, including detection
and classification of cough events, could potentially be used to
assist TB screening (see Supplementary Table 1). However, further
development and evaluation is critical to move the field forward.

The accuracy of these AI algorithms is contingent on the
characteristics of the training dataset. To date, external validation
of various AI algorithms has been limited, or has not yet been
performed, and the sample sizes used to evaluate these algorithms
have been relatively small47. Additionally, early diagnostic studies
of novel tests, including AI algorithms, tend to overestimate the
diagnostic accuracy, mainly because of the preferential exclusion
of more complicated cases48. Until sufficient replication studies
have been completed using large, and diverse cough datasets,
representative of different populations, the clinical application of
these AI algorithms will remain limited.

Using digital cough monitoring to change TB care
Digital cough monitoring has the potential to address multiple gaps
in the TB cascade of care (Fig. 2)49. In this section, as an example
of the breadth of the potential value of cough data, we outline
hypothetical ways in which AI-based cough tools could be used.

Supporting TB program planning. Finding people with TB, or
who have symptoms of TB, requires health systems and TB
programs to strategically deploy limited resources. In a syndromic
surveillance approach (i.e. detection and aggregation of individual
and population health indicators, such as symptoms, prior to
establishing a definitive diagnosis) both individuals at risk of
developing TB, or people who previously had TB, could passively
and prospectively monitor their cough. Temporal and geospatial
aggregations of cough events could in turn be used to better target
case-finding activities and identify high-risk settings. Spatio-
temporal changes in cough frequency at the population-level can
be used as a proxy for the incidence of COVID-19, TB or other
respiratory diseases36. Whether specifically dedicating public
health resources to investigate such cough clusters would accel-
erate the identification of additional prevalent cases and improve
disease case notifications needs to be investigated. Restricting this
cough surveillance analytic approach by monitoring people pre-
viously diagnosed active pulmonary TB could identify cough
hotspots where the risk of TB transmission has been, and may
still be, even higher.

Seconds

a b

Fig. 1 Digital cough spectrograms for artificial intelligence algorithm analysis. aWaveform image of a pulmonary TB cough. b Spectrogram conversion of
the waveform cough. On the spectrogram, acoustic information is represented as frequency (y-axis) and amplitude (color) over time (x-axis).
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Improving community-based monitoring and active case
finding. Very preliminary data suggests that cough classification
algorithms could be developed that meet WHO TPPs for a
community-based TB screening test44,45. Further validation is
needed using cohorts of large sample size and diverse populations
before any definite conclusions can be made regarding their
sensitivities and specificities. AI-based cough screening could
complement other available community-based screening
approaches, such as chest X-rays, increasing the number of
people with presumed TB appropriately referred to facilities for
confirmatory testing in a timely manner. Indeed, using cough to
predict chest X-ray abnormalities could trigger radiology testing
for which multiple automated interpretation algorithms have now
been thoroughly validated50. If deployed on mobile devices, AI-
based cough screening could allow for low-cost remote active case
finding and self-screening, with subsequent referral to a health
facility for confirmatory TB testing and linkage to care. The
vignette in Fig. 3 illustrates how a cough monitoring tool may
help refer people with a cough to a physician.

For individuals at higher risk of developing active pulmonary TB,
such as household contacts, cough detection and longitudinal
monitoring could objectively document an increase in TB-
compatible symptoms, prompting early care-seeking and limiting
transmission. This approach could also help address subclinical
pulmonary TB51. Individuals who have mild symptoms, but do not

recognize them as being significant, are also considered subclinical51.
In such cases, digital cough monitoring could be used to identify the
presence or significance of cough that would otherwise have gone
unrecognized or unreported. However, digital cough monitoring
would not extend to truly asymptomatic individuals with subclinical
TB, limiting its application as an active case finding tool in this sub-
group. A study of 24 people with TB found that cough frequency
may not be associated with M. tuberculosis output collected on face
masks15. That is, some participants who did not cough very often
still expelled a lot of M. tuberculosis (and vice versa). While further
investigations are needed, this raises potential limitations of relying
on cough monitoring for evaluating active case-finding and reducing
TB transmission.

Enhancing the performance of diagnostic algorithms. Even
when people with presumed TB reach the health facility, it is not
guaranteed that they will access proper confirmatory testing. One
reason for this is a lack of awareness and training among
healthcare workers to recognize key TB symptoms. This problem
has been demonstrated by studies involving standardized patients
(SPs), healthy persons trained to visit health facilities with fake
TB symptoms, without the healthcare providers being aware that
these symptoms are not real52. A systematic review on SPs in
India found that only half of healthcare providers knew that
prolonged cough (>2 weeks) may be associated with TB52.
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Fig. 2 Potential use cases for digital cough monitoring in the tuberculosis cascade of care. Each step in the TB care cascade is represented as a bar. The
gaps in the cascade are in red between each step. Boxes pointing at the gaps represent possible digital cough-based solutions to address various gaps. The
height of the bar graphs and the length of the gaps are not scaled to represent true values. They are intended to help illustrate the different steps of the care
cascade and points at which people with TB may fail to benefit from care. (Cascade of care adapted from Fig. 1 of Subbaraman et al.)49.
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Fig. 3 Example use of smartphone-based cough screening application for community-based monitoring. In this vignette, a female is experiencing
symptoms of disease, including cough. Using a phone with the example Health App (not a real app), she is prompted to cough and report any other
symptoms she is experiencing. The AI algorithm in the Heath App uses the information to provide likely causes of disease (in this case, COVID-19 or TB)
and refers her to consult a physician for confirmatory testing. (Vignette originally created for The Lancet Citizens’ Commission on Reimagining India’s Health
System, by Raghu Dharmaraju, Vijay Chandru, Umakant Soni, and Shubraneel Ghosh, ARTPARK (AI & Robotics Technology Park) at Indian Institute of
Science. “A vignette from 2030 in rural India: How might technology enable citizen-centered health journeys?” https://www.artpark.in/reimagine-health/2030_
rural_india).
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Another study in India found that SPs presenting with TB
symptoms were severely under-tested53.

Similar to community-based screening and active case-finding,
health providers may potentially use AI-based cough classifica-
tion applications to help triage people with presumed TB,
complementing less sensitive symptom-based triage methods and
increasing the proportion of individuals with presumed TB who
undergo confirmatory testing. Because symptom screening is also
non-specific, cough classification tools may also help reduce the
proportion of people without TB who unnecessarily undergo TB
testing.

Monitoring the effect of treatment. Smartphones are globally
available and can act as recording devices. They are already used
for TB treatment-adherence monitoring with video Directly
Observed Therapy (vDOT), which allows people with TB to send
videos of themselves ingesting anti-TB treatment to their health
provider, instead of having to travel to the clinic to take their anti-
TB treatment in front of a health provider, as required under
traditional DOT methods54. Given that cough symptoms regress
with successful treatment, cough detection applications could be
used as a low-cost, person-centric approach for clinicians to
remotely monitor people with TB’s clinical response to treatment,
or even for people to self-monitor their cough as treatment
progresses13. Objectively-documented unfavorable cough evolu-
tion patterns could prompt patients and providers to investigate
whether the treatment regimen being used is effective, allowing
for early recognition of drug resistance or poor adherence.

Achieving relapse-free cures and minimizing long-term lung
damage. A significant proportion of people who are successfully
cured of TB are at risk of TB recurrence within the first year
following completion of anti-TB treatment55. The prospective
cough monitoring used during treatment could be continued
during this high risk period to identify early signs of TB recur-
rence. Even if people do not experience TB recurrence or relapse,
they are at increased risk of experiencing post-TB lung damage,
an aspect of TB care that is often overlooked in TB management
pathways56. Thus, cough monitoring, if validated, could also be
useful as a starting point in identifying individuals with post-TB
lung disease and related lung function decline.

Supporting drug development and TB research. AI-based cough
detection technology could also play a role in TB research and
development. Digital cough monitoring could be used as a sec-
ondary endpoint in clinical drug development trials. Drug
development trials have so far relied on evaluating whether
sputum culture test results change from positive to negative
during the first 8 weeks of therapy as a proxy for anti-TB treat-
ment efficacy57. Such culture methods are resource- and time-
intensive, and do not allow the monitoring of intermediate out-
comes, including patient symptoms. In addition, regulatory
agencies may request data on patient-reported improvement in
cough, though again this is subjective and can have variable
accuracy58,59. Similar to symptom-based screening, self-
assessment of cough in the context of experimental therapy-
efficacy measurement is unlikely to be fully accurate. Objective
monitoring of cough may allow for more nuanced monitoring of
intermediate endpoints by acting as a complement to conven-
tional culture-based endpoints and patient-reported outcomes.

Furthering the clinical use of digital cough monitoring
The recent progress in acoustics and cough analysis, combined
with the urgent need to improve respiratory disease detection and
tracking methods in the context of COVID-19, have accelerated

applications of acoustic epidemiology in clinical research37,42,60.
This emerging field depends on increasingly less obtrusive ways
to collect cough data as well as more sophisticated analytics that
go beyond cough detection to infer clinical etiology based on
cough patterns and spectral characteristics.

The development, validation, and roll-out of digital cough
monitoring tools for TB will require global coordinated data col-
lection, curation, and analysis effort. Training and validation cough
datasets need to be collected from people in the intended use
population and settings. They must include large numbers of people
with different demographic characteristics (e.g. age, sex, ethnicity)
as well as different forms of pulmonary TB in clinical settings with
variable background epidemiology of respiratory diseases. This ‘big
data’ approach is mandatory for the development and refinement of
AI algorithms to achieve high external validity. Since cough is not
specific to TB, such datasets should not be limited to the devel-
opment of AI algorithms for TB but should also be used to develop
and refine cough algorithms for other respiratory diseases and
conditions that are linked to cough. To accelerate this endeavour,
we must avoid the multiplication of isolated algorithm development
efforts that use data from homogeneous patient populations47.

Collective efforts to aggregate and annotate cough data may
accelerate research and tool development. For example, Global
Health Labs, the Bill and Melinda Gates Foundation, and the
Patrick J. McGovern Foundation are currently supporting efforts
to collect cough data and are investing in infrastructure to build
an extensive database of cough sounds. Researchers interested in
cough and acoustic epidemiology—in the context of TB or any
other respiratory disease or condition linked to cough—can
contribute to this growing anonymized database and use the
existing data to develop and refine AI. While this effort is an
important step towards integrating cough into TB care, there is
still a need for a broader recognition of the potential advantages
of integrated AI-based cough tools into TB care. As more AI-
based cough detection tools and applications become available,
increased effort should be made to routinely collect cough data
within TB programs, prevalence surveys, and clinical studies in
order to contribute to the growing field of acoustic epidemiology.
Such efforts will help characterize the natural evolution of TB
cough, objectively describe the impact of specific interventions on
TB symptoms, and iteratively improve operational and perfor-
mance characteristics of cough-based TB solutions. Like other
biomarkers, collected cough data must be anonymized, annotated
with clinical metadata, and shared in open-source repositories.
TB cough data must also be made available in the same way that
digital chest X-ray libraries are available for the validation of
electronic interpretation algorithms, or that TB genomic
sequences are available to support novel drug development and
validation of drug resistance assays61,62. Through such collective
efforts, we can accelerate algorithm development and the roll-out
of cough-based clinical tools. This data sharing approach should
also improve partnerships between academia and industry by
allowing faster hypothesis-testing as well as rapid product design
and translation into user-friendly tools that can be deployed at
scale in TB care. In conclusion, AI and acoustic epidemiology
have the potential to revolutionize the fight against TB.
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